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Folded l?abry-Perot Quasi-Optical Ring
Resonator Diplexer: Theory and Experiment

HERBERT M. PICKETT AND ARTHUR E. T. CHIOU

Abstract —Performance of folded Fabry-Perot quasi-opticaf ring reso-
nator diplexers with different geometries of reflecting surfaces is investi-

gated both theoretically and experimentafly. Design of optimum surface

geometsy for minimnm diffraction, together with the figure of merit
indicating improvement in performance, are given.

I. INTRODUCTION

A FOLDED FABRY–PEROT resonator with plane

parallel reflectors, which serves the purpose of filter-

ing the noise and diplexing the local oscillator and signal

energies into the mixer, was described and tested by

Gustincic [1], [2]. The basic idea is illustrated in Fig. 1. The

resonator is tuned by moving the mirror block so that

the local oscillator input from port I is at resonant peak of

the cavity and gets transmitted into port IV. The signal

input at a slightly different frequency lies in the anti-reso-

nant band of the cavity and gets reflected from port III

into port IV. The transmission characteristic of the

FabryPerot cavity is the well-known Airy Function [3].

The advantage of the Fabry-Perot ring resonator diplexer

over the two-beam interferometer diplexer [4], whose trans-

mission characteristic is of sinusoidal nature, lies in the fact

that the Fab~–Perot resonator, with the Finesse F >>1,

has a better noise rejection factor for the local oscillator

input port and also a much Wider reflection band for the

signal port. The advantage of this type of Fabry-Perot

cavity over the infinite slab Fabry-Perot resonator analyzed

by Arnaud et al. [5] and by Goldsmith [6] is that geometri-

cal walk-off loss is eliminated. Other types of diplexers

were described by Nakajima and Watanabe [7].

In Section II, we give qualitative treatment on how

diffraction effect limits the performance of the diplexer

and introduce a simple solution for minimum diffraction.

Mathematical formulation of the problem on diplexer per-

formance, its underlying assumptions, detailed analysis,

and theoretical results are given in Section III. Some of the

mathematical details are given in the Appendix. Experi-

mental results at 100 GHz are presented in Section IV. In

Section V, we conclude by summarizing our results with
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Fig. 1. Schematic diagram of a folded Fabry-Perot ring resonator
diplexer.

a description on how they can be applied to estimate the

figure of merit of the diplexer with a curved reflector as

compared to one with plane reflectors.

II. EFFECT OF DIFFRACTION AND THE RELATED

DESIGN PROBLEM

For applications in millimeter- and submillimeter-wave

regions, performance of the diplexer is’ essentially limited

by diffraction effects. Diffraction in the vertical direction

results in energy loss of the system, since the top and

bottom of the cavity are open,, while diffraction in the

horizontal direction couples port III and port IV together

so that a significant fraction of the local oscillator input

energy is distributed into port III. This can be visualized

by conceptually propagating the input beam through a

lattice of vertical cavities, as is illustrated in Fig. 2. Diffrac-

tion effects can be controlled by replacing one of the plane

reflectors with a curved mirror with surface properly de-

signed so as to phase match a Gaussian beam with ap-
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Fig. 2. Horizontal diffraction effect: a schematic illustration.
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Fig. 3. Reflector surface design for minimum diffraction. (a) Top view.

(b) Side view.

propriate beam waist at the plane reflector, as shown in

Fig. 3. A toroidal surface with horizontal radius of curva-

ture twice that of the vertical turns out to be a very good

approximation.

Steps leading to a solution of the design problem follow.

1) Choose the free spectral range (FSR) of the cavity so

that it is twice the intermediate frequency ~1~ of the system

(i.e., FSR = 2~1~). The condition above fixes the width W’

and length L of the square cavity to W= L = c/4@1~

where c is the velocity of light in free space.

2) The appropriate beam waist radius WOand the Raleigh

length (ZR ) are given by WO= W/3ti, Z~ = n w~/A, where

A is the free-space wavelength. This chc)ice gives a Gaussian

amplitude on the mesh which has a waist parameter equal

to 1/3 of the cavity width.

3) The horizontal and vertical radii of curvature for the

toroidal surface are determined by R~ = 2L + Z; /L, RO

= R~/2.

Following the steps listed above, we have constructed an

experimental model based on the following parameters:

~,, = 1 GHz, W= L = 5.30 cm, WO= 1.25 cm, A = 0.3 cm,

R~ =62 cm, and RO=31 cm. In or(der to separate the

effect of diffraction in the vertical direction from that in

the horizontal direction, a resonator with a cylindrical

reflector designed to control only the vertical diffraction

loss has also been constructed and tested. Our experimen-

tal models also include a diplexer with plane reflectors so

that the total effect of diffraction in both directions can
also be observed. Preliminary experimental results were

reported in [6].

Although the cavity model described above leads us to

the optimum curvature with minimum diffraction effect, it

is far too simple to predict how much improvement one

should expect by introducing the phase-matching curved

reflector. The formalism used by Amaud et al. [5] can be in

principle used to predict transmission of the flat-wall and

curved-wall geometries. However, the results of the walk-

off analysis presented in that paper are not applicable here

because of the special boundary conditions imposed by the

reflecting mirrors. The flat mirror case is formally equiva-

lent to the case treated by Arnaud if the single detector is

replaced by an array of detectors. The curved mirror case is

more difficult because edge diffraction from the aperture

of the cavity becomes significant. Description of the cavity

in terms of its resonant modes is more convenient in the

high finesse case where edge diffraction is important be-

cause the effects are included implicitly. An analysis based

on a modal expansion will be described in the next section.

III. MATHEMATICAL FORMULATION AND ANALYSIS

Exact three-dimensional analysis of performance of the

diplexer with a curved reflector is fairly complicated. For

practical application in the millimeter- and submillimeter-

wave regions, where the” curvatures are mild, we can as-

sume that diffraction effects in the vertical and horizontal

directions can be decoupled. The original problem is thus

resolved into two simpler problems, namely, a one-dimen-

sional infinite strip resonator problem for treatment of

vertical diffraction loss, and a two-dimensional waveguide

problem for treatment of horizontal diffraction effect. The

two are decoupled in the sense that the solution from the

first part enters only as a parameter into the second.

A. Infinite Str@ Resonator Model

For the plane resonator diplexer, the infinite strip plane

resonator model of Barone [7] is used to approximate the

eigenfunction and the diffraction loss associated with each

mode in the vertical direction. The excitation efficiency of

each mode by various input beams (plane wave and

Gaussian beams with various beam-waist sizes) is evaluated

by the overlap integral of the input function and the

eigenfunction of each mode. For the cylindrical and toroidal

resonator diplexers, diffraction loss in the vertical direction

is estimated by the infinite strip cylindrical resonator model

of Boyd and Gordon [8]. Dimensions of the actual cavity

and the associated models are illustrated in Fig. 4, with

Fresnel Numbers and round-trip amplitude diffraction

losses of the fundamental modes given in the lower part of

the figure.

B. Two-Dimensional Waveguide Problem ,

Mathematical formulation of the two-dimensional wave-

guide problem, together with the appropriate coordinate

system, are illustrated in Fig. 5. Dependence on the y
coordinate is ignored, since the effect of field variation in

the y direction was separately taken into account in Section

III-A, as explained above. The electric and magnetic fields

at z = O and z = W can be expanded in terms of the
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Fig. 4. Estimation of vertical diffraction loss by one-dimensional in-
finite strip resonator model.

the eigenvalue problem of the waveguide can then be

expressed as

Tua = Aaua = exp (i+a)ua (3)

where Ua and A. are the eigenvectors and the eigenvalues

of the waveguide. The procedure for determination of T

matrix will be described in the Appendix.

In general, Twill be a nonsymmetric real matrix and the

eigenmodes will appear in pairs with eigenvalues given by

exp ( + i+), representing forward- and backward-going

waves.

Note that if we represent the eigenvectors in the basis set

as

( Ula \

[:1UzaUa = (4)

the associated eigenfunctions +. will then be given by

+.= Xu..w sin(nnx/LJ. (5)
n

Consider a linearly polarized input beam from port I

with the electric field vector given by E = Iio(x ) y at z = O.

If we ignore the magnetic part and also the impedance

mismatch between free space and the waveguide, we can
1

Eo- L
,0

;: expand the incoming field in terms of the complete set of

~—,,—+

Fig. 5. Dimensions and coordinates associated

sional wavegnide analysis.

complete basis set as

with the two-dimen-

Ey(z = O) = ~e~~sin(nrx/Lg) (la)
n

Hx(z= O) = ~h~~sin(nmx/LJ (lb)
n

EY(z= W) = ~e~~sin(nnx/Lg) (lC)
n

HX(Z =W) = ~h~~sin(n~x/LJ (id)
n

where all the e:, h:, en, and h ~ are complex in general.

Symbolically, we can express the expressions above as

(:)==0=(;)
(:)Z=W=K)

(le)

(if)

For an input beam linearly polarized in they direction,

we consider only the TE modes, since the TM modes are

not significantly coupled to our input beam.

Presume we have a T matrix that transforms the E and

M fields at z = O to those at z = W, so that

(f)=T(;) (2)

basis functions as

EO(X) = ~S~~sin(nx/L,) (6)
n

where

S. =~~Lgsin(nx/L~) Eo(x) dx. (7)
o

.EO(x) cart also be expressed in terms of the eigenfunctions

as

(8)
a

where the prime is used to symbolize the fact that the

summation should run only over the “E-parts” of the

eigenfunctions with eigenvalues representing the forward-

going waves. Using (5), we can rewrite (8) as

EO(X) = ~qa~a~ sin(n~x/Lg) (9)
an

where V is the submatrix of u which couples the E field

with the forward-going eigenmodes. By comparing (6) and

(9), we have

a.

or

‘n. = E Va.’sn . (11)
n

Each eigenmode propagates independently through the

Fab~–Perot, with amplitude transmittance and reflectance

given by [3]

t.= qat2AJ(l - r2A~) (12a)

ra= qa[r + t2A~/(1– r2A~)] (12b)
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where r and t are the amplitude reflection coefficient and

the amplitude transmission coefficient of the interfaces.

From (9), (1 1), and (12), the total transmitted and reflected

amplitudes can be expressed as

E,= ~ Va~SmKa~ sin(rzm-X/~g)[ui. /(l - “AI)]
mm

(13a)

E,= ~ va;’sm~a~ sin (~~@g)

awn

. [r+ t2A~/(1- ,2A;)]. (13b)

The field E, and E, can be Fourier analyzed into far-field

patterns. Alternatively, the amplitude received by a detec-

tor (receiver) can be determined by conceptually treating it

as a transmitter and taking the overlap integral of its

emitted amplitude distribution at an appropriate plane

with the normalized amplitude distribution at the same

plane of the field to be detected. If the detector at port IV

has the same geometry as the transmitter at port I, we

have, from (6) and (7)

E:= EO = ~S.~sin(n~x/L~) (14)
n

and

S.= ~~LgEj sin (nnx/L~) dx. (15)
o

Amplitude received by the detector at port IV is then given

by

t4 =
J

‘SE:E, dx.
o

Using (12a), (13b), and (14), we get

t,= ~ V.;’fi.SJ. [t2AJ(l – r2A~)] .
anm

Similarly, if

Q.= ~~L’E$ sin(qrx/L,) dx

then

t3 = ~ Va;l~aS~Q.[t2AJ(l- r2At)].
enm

For port I and port II, we have

,1= ~ v::~asmsn[r + t2A~/(1 - r2A~)]
anm

(16)

(17)

(18)

(19)

(20)

r2 = ~ Va;lV.#~Qm[r + t2Ai/(1 – r2A%)]. (21)
c-inm

As an illustrative example, let us apply the procedure

described above to analyze the simplest special case where

both side walls of the waveguide are flat. The transforma-

tion matrix T is given by

T= Z’,XT2X-. .THX... (22)

Tn =

(

Cos(knw) sin(k~W)/kH

–k. sin(k.W) 1

(23)
cos(k.W)

and

k;= (2~/X)2–(n~/L~)2. (24)

The eigenvectors

(i:n)and(-;k.)
satisfy the eigenvalue equations

()~i; (’.landz(-;kn)= exp (ik~W) ik
n

()

= exp ( – ik.W) _ ~.k
n

as can be easily verified.

For input plane wave from port I with incident angle= 8

Eo(x) =~exp[ikOsinO(x – L,/2)] = ET(x)

(25)

E;(x) =~exp[- ikosin8(x-L~/2)]. (26)

From (17) and (18) we have

“JLgsin(n~x/Lg) exP[i~osinO(x - %“2)] dx (27)
o

Qn=S:. (27a)

By straightforward integration, we get

S.= – il/2[exp (n~i/2) sinc(kOLgsin (0/2) + nn/2)

– exp ( – n~i/2) sinc(kOLgsin (0/2) – rzT/2)]. (28)

Field amplitude as “seen” by the detector at each port can

be determined by using (17) and (19) through (21).

The rapid decay of” sine” function with increasing argu-

ment ensures that the infinite sums, over index n and m in

the expression for t~, t~, r2, and r,, have only a few terms

(modes) adjacent to q = koL~sin8/m that have significant

contribution. Furthermore, the V matrix turns out to be

“almost diagonal” (i.e., the elements that are significantly

different from zero are those along the diagonal, and in

some cases, those adjacent to the diagonal), so that the

infinite sum, over index a, also converges rapidly within a

few terms in the neighborhood of a = q. Most of the energy

is thus carried via the mode q = kOLg sin @/n and the

adjacent modes.

It is the interference between the q mode and adjacent

modes which leads to the directivity. In (17), the contribu-

tion of the q mode to the sum by product S~S~ has a

magnitude of - 1/2. The two adjacent modes together

contribute 0.405. For t4,the phase is such that these three

modes add, while for t~ the phase is such that these modes

subtract. This picture, in which directivity is a consequence

of interference between modes, persists to the case of the

diplexer with a curved mirror. For the waveguide with

one curved wall, most of the energy comes in two ad-
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Fig. 6. Phase dispersion of four of the eigenmodes for waveguide with
L= W=5.28cm, R=60cm.

Fig. 7. Normalized phase difference 8 of the two dominant eigenmodes

versus LO/R. m = E L$ / k is the resonant order. Straight lines repre-

sent the fit by the empmcaf relation 8= exp (– 0.0283 m2/LO/R)/m.

jacent modes with propagation phase factors separated by

almost n-.

Using parameters for our experimental model with a

curved mirror, theoretical phase dispersion curves for four

of the eigenmodes have been computed and are plotted in

Fig. 6. Note that the eigenmodes are labeled by index q

such that Iu~al > Iu~al for all n. Although this scheme

introduces some ambiguity when two or more basis modes

are almost equally dominant, it is convenient because it

labels the particular basis mode that has maximum contri-

bution.

Results of our numerical calculations also indicate that,

for optimal Gaussian beam input excitation, only two of

the eigenmodes are significantly coupled and their phase

difference 8 turns out to be a crucial parameter that

determines the transmission characteristics. We define d as

the fractional part of the phase difference measured in

units of r. Equivalently, IS is the frequency separation of

the modes divided by the free spectral range. In Fig. 7,

values of 8 are plotted against LO/R with m - 2L~/A as

parameters. A is the free-space wavelength and the meaning

of LO, R, and L~ are defined in the inset for Fig. 7. It is

interesting to note that the results (circles) fit very well

by the empirical relation 8 = exp ( – 0.0283 m2L0/R)/m

(straight lines).

Transmission into port IV, Ild 12, is plotted against input

Gaussian beam waist size with radius of curvature of the

waveguide as parameter in Fig. 8. The arrows in the figure

indicate the waist sizes for which the input Gaussian beam

is phase-matched to the curved surface illustrated in Fig. 3.

The agreement with our waveguide analysis is excellent.

So far we have completely ignored the existence of metal

meshes at the input and output planes or our waveguide.

The reflectivity of the metal meshes determine the Finesse

F of the diplexer. In practice, values of F are set by system

‘:~
0.5 1.0 1.5 2.0 2.5 3.0 3.5

~o

Fig. 8. Through-put (port IV) versus waist size of input Gaussian beam

for different wall curvatures. Waist sizes such that the beam phase-
matched to the curved surface are indicated by arrows.

requirement. Since the Finesse is the free spectral range in

units of transmission linewidthi and d is the phase dif-

ference of the two dominant eigenmodes in units of the

free spectral range, the product Fi3 can be interpreted as

the ratio of phase difference of the two dominant eigen-

modes to that of the transmission linewidth. Transmission

into port IV, Itd I2, for diplexers with flat and curved

reflectors are compared in Fig. 9 for various values of F13.

C. Solutions to the Three-Dimensional Problem

To convert the solutions (17), (19), (20), and (21) of the

two-dimensional problems into those of the original three-
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Fig. 9. Transmission (Td ) for diplexers with Ilat and curved reflectors
versus FcS.(— curved mirror, ---- flat mirrcm.)

dimensional diplexer problem, we have to consider the

effect of finite size and curvature of the walls in the vertical

direction. Diffraction loss due to finite size can easily be

taken into account simply by replacing the amplitude

reflectance rby r~and the amplitude traumnittance tby tfi,

where 1 – f is the amplitude attenuation per round trip due

to vertical diffraction loss. The values of 1 – ~ awe given in

Section III-A. Under the conditions that loss factor is

relatively smzdl (i.e., 1 – ~ << 1) and that the vertical curva-

ture of the wall is mild so that the mode structure of the

two-dimensional waveguide analyzed in Section III-B is

not significantly distorted, the results obtained by this

approach should represent a very good approximation to

the solutions of the original problem. The effective finesse

will be

F= m(r~)/(1– r’jz’) (29)

and

T:= Ta(l– r2)2~/(1– r2~2)2 (30)

where Td - Itd 12 is the power transmission for port IV of

the two-dimensional problem (Fig. 9), and T; is the corre-

sponding power transmission for the three-dimensional

problem.

IV. EXPERIMENTAL RE!NJLTS

Our experimental setup for transmission measurement in

the vicinity of 100, GHz is shown in Fig. 10. Electroformed

meshes (MN-40 from Buckbee–Mear Co.) are used as the

partially transmitting mirrors at both sides of the diplexer.

The monomodal approximation [9] is applied to the free-

standing mesh model of Chen [10] to estimate their trans-

mission characteristics. Experimental :results at 100 GHz

agree fairly well with theory. Experimental values of Tj

(power transmission into port IV) for diplexers with differ-

ent geometries of reflecting surfaces are compared in Fig.

11. In each case, values of T; for the corresponding wave-

guides (i.e., with no meshes) are used as the O-dEl reference.

Note that the lpeak values of T~ are improved by steps of

approximately 3 dB in going from plane to cylindrical and

cylindrical to toroidal reflecting geometries. Within our

experimental errors of + 1 dB, the peak of Tj for toroidal

diplexer shows O-dB loss relative to the toroidal waveguide.

Furthermore, the toroidal geometry also helps in suppres-

sing the unwanted secondary transmission peak which in-

Fig. 10. Experimental setup for transmission measurement in the vicin-
ity of 100 GI-Iz.

zero dB reference

5 dB
1 l-s-

(a)

zero dB reference

I

AJL
5 dB

T’

(b)

ze~o dB reference

-L

5 dB

\

(c)

Fig. 1I. Experimental results of tra&mission measurement for diplexers
with different geometries. (a) Plane diplexer. (b) Cylindrical diplexer.

(c) Toroidal diplexer,

variably appears in the transmission

of plane and cylindrical diplexers.

characteristic curves
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V. CONCLUSION

In this paper, a solution to the design problem of a

folded Fabry-Perot quasi-optical ring resonator diplexer

for minimum diffraction effect is given. Performance of

diplexers with and without optimal geometry is investi-

gated both theoretically and experimentally. Performance

curves are presented so that they can be used to estimate

how much improvement in performance one could expect

by switching from the plane reflector to the optimal curved

reflector.

Important steps are summarized below for the interest of

prospective practical users.

1) The size of the cavity, appropriate input Gaussian

beam waist size and optimal radii of curvature for mini-

mum diffraction are all determined by the intermediate

frequency ~1~ of the system as explained in Section II.

2) The resonant order q is approximately given by q

=0 w/A.

3) For the plane diplexer, the fractional part of the phase

difference of the two dominant eigenmodes in modulo T is

given by d ==I/q.

4) For the toroidal diplexer, the phase difference can be

obtained from the empirical formula associated with Fig. 7.

5) Based on the value of the Finesse F required by the

experimental condition, peak transmission for both the

plane and toroidal diplexers can be estimated from

the curves given in Fig. 9, assuming no diffraction loss in

the vertical direction.

6) Peak transmission can then be corrected for loss in the

vertical direction using (30), and the reflectivity of the

mesh can be determined from (29).

APPENDIX

DETERMINATION OF T MATRIX FOR A

TWO-DIMENSIONAL WAVEGUIDE WITH ONE CURVED

WALL

The basic idea of our approach is to approximate the

curved surface by a series of steps as illustrated in Fig. 12.

Let the total number of steps be 2N – 1, the depth of the

steps are chosen, for later convenience, so that

L,/L,_, = (LO/L~)l’~ fori <0 (Al)

L,/L,_l = (LO/L~)-l’~ fori> O. (A2)

Note that the ratio is independent of the step index “i”.

Values of z where the jumps occur are chosen so that the

original curve X(Z) bisects the vertical segments at each

jump, i.e., X(ZZ _ ,,, ) = (LZ_, + 4)/2. The step width ~ is
fixed by the conditions above and does depend on the

index “i”.

The T matrix can be expressed as

T = ‘N TdpN–l Td” “ “ ‘2 Tdpl Tup0 “ “ “ ‘–(N– I) TUP– N

(A3)

where P,. the txo~a~ation alorw ste~ “1” of width SW,. is

z. 1
i-1, i

Fig. 12. Approximation of curved wall by steps of constant length ratio.

given by

P,= P1, XP2[X . . . (A4)

and

Pn[ =

(

COS(WFV[) sin ( k.,c? W1)/kn[

– k~lsin(k#Wl) )

(A5)
COS ( k.la W/)

with

k;[ = (2~/A)2– (n~/L[)2. (A6)

For frequencies beyond cutoff (i.e., for imaginary values of

k.l), the expression for k~l given above can still be used

with the standard substitution of hyperbolic functions for

trigonometric functions.

Tu is the mode change at each “step up jump” given by

()TU= x 0
ox

(A7)

and Td is the corresponding change at each “step down

jump” given by

()Td= “ 0
0 x’

(A8)

where

x= ‘ sin mvx Li “~~ ~& ~’-’ ( / )sm(n~x/L,_l)dx

–sinc(n~ + mrLi_l/Li)]. (A9)

Note that x~~ depends only on n and m, and the ratio

L,_, /L, which is independent of the step index “i”.
For the calculations reported here, the step approxima-

tion converged when 50 to 100 steps were used. The size of

the plane-wave basis required ranged from 10 to 20 values

of n centered about q. Only a few waves beyond cutoff

could be used because of round-off errors in the cosh and

sinh functions.
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Numerical Analysis of Open-Ended Coaxial
Lines
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Abstract —Numencaf methods are applied in the anafysis of coaxiaf

structures used as sensors for in uioo permittivity studies of biological
substances. The methods used for the solntion of the resufthrg static
conductor-dieketric problems are the Finite Element Method (FEM) and

the Method of Moments (MOM) applied to a pair of coupled integral
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equations. A linear model which relates the sample permitdvity to the
fringing field capacitance of the sensor is disenssed and vefues of the model

parameters are calculated for different types of sensors.

I. INTRODUCTION

o PEN-ENDED coaxial lines have been used exten-

sively as sensors for permittivity measurements of

biological substances in recent years [1]. Their simple

geometry and small size (potentially as small as 0.5-mm

diameter) makes them suitable for in oko measurements as
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