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Folded Fabry—Perot Quasi-Optical Ring
Resonator Diplexer: Theory and Experiment

HERBERT M. PICKETT anp ARTHUR E. T. CHIOU

Abstract —Performance of folded Fabry-Perot quasi-optical ring reso-
nator diplexers with different geometries of reflecting surfaces is investi-
gated both theoretically and experimentally. Design of optimum surface
geometry for minimum diffraction, together with the figure of merit
indicating improvement in performance, are given.

I. INTRODUCTION

FOLDED FABRY-PEROT resonator with plane

parallel reflectors, which serves the purpose of filter-
ing the noise and diplexing the local oscillator and signal
energies into the mixer, was described and tested by
Gustincic [1}, [2]. The basic idea is illustrated in Fig. 1. The
resonator is tuned by moving the mirror block so that
the local oscillator input from port I is at resonant peak of
the cavity and gets transmitted into port IV. The signal
input at a slightly different frequency lies in the anti-reso-
nant band of the cavity and gets reflected from port III
into port IV. The transmission characteristic of the
Fabry—Perot cavity is the well-known Airy Function [3].
The advantage of the Fabry—Perot ring resonator diplexer
over the two-beam interferometer diplexer [4], whose trans-
mission characteristic is of sinusoidal nature, lies in the fact
that the Fabry—Perot resonator, with the Finesse F > 1,
has a better noise rejection factor for the local oscillator
input port and also a much wider reflection band for the
signal port. The advantage of this type of Fabry—Perot
cavity over the infinite siab Fabry—Perot resonator analyzed
by Arnaud et al. [S] and by Goldsmith [6] is that geometri-
cal walk-off loss is eliminated. Other types of diplexers
were described by Nakajima and Watanabe [7].

In Section II, we give qualitative treatment on how
diffraction effect limits the performance of the diplexer
and introduce a simple solution for minimum diffraction.
Mathematical formulation of the problem on diplexer per-
formance, its underlying assumptions, detailed analysis,
and theoretical results are given in Section ITI. Some of the
mathematical details are given in the Appendix. Experi-
mental results at 100 GHz are presented in Section IV. In
Section V, we conclude by summarizing our results with

Manuscript received June 7, 1982; revised January 11, 1983. This work
was supported by NASA under a contract with Caltech Jet Propulsion
Laboratory.

H. M. Pickett is with the Jet Propulsion Laboratory, California Institute
of Technology, Pasadena, CA 91109.

A. E. T. Chiou is with the IBM San Jose Research Laboratory, San
Jose, CA.

373
PORT IV PORT Il
(OUTPUT TO MIXER) (SIGNAL INPUT)
_____ MESH e
MOVABLE
FIXED
MIRROR
MIRROR e e—
MESH
\ TOP VIEW
PORT | PORT 11 (FREE)
(L.O. INPUT)
SIDE VIEW
Fig. 1. Schematic diagram of a folded Fabry-Perot ring resonator

diplexer. '

a description on how they can be applied to estimate the
figure of merit of the diplexer with a curved reflector as
compared to one with plane reflectors.

II. EFFECT OF DIFFRACTION AND THE RELATED
DESIGN PROBLEM

For applications in millimeter- and submillimeter-wave
regions, performance of the diplexer is essentially limited
by diffraction effects. Diffraction in the vertical direction
results in energy loss of the system, since the top and
bottom of the cavity are open, while diffraction in the
horizontal direction couples port III and port IV together
so that a significant fraction of the local oscillator input
energy is distributed into port 1II. This can be visualized
by conceptually propagating the input beam through a
lattice of vertical cavities, as is illustrated in Fig. 2. Diffrac-
tion effects can be controlled by replacing one of the plane
reflectors with a curved mirror with surface properly de-
signed so as to phase match a Gaussian beam with ap-
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Fig. 2. Horizontal diffraction effect: a schematic illustration:
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Fig. 3. Reflector surface design for minimum diffraction. (a) Top view.
(b) Side view.

propriate beam waist at the plane reflector, as shown in
Fig. 3. A toroidal surface with horizontal radius of curva-
ture twice that of the vertical turns out to be a very good
approximation.

Steps leading to a solution of the design problem follow.

1) Choose the free spectral range (FSR) of the cavity so
that it is twice the intermediate frequency fip of the system

“(i.e, FSR = 2 ;). The condition above fixes the width W
and length L of the square cavity to W= L= c/4\/— 5
where ¢ is the velocity of light in free space.

2) The appropriate beam waist radius w, and the Raleigh
length (Zy) are given by w,=W/3V2, Zp = 7w/, where
A is the free-space wavelength. This choice gives a Gaussian
amplitude on the mesh which has a waist parameter equal
to 1/3 of the cavity width.

3) The horizontal and vertical radii of curvature for the
toroidal surface are determined by R, =2L + Z%/L, R
=R, /2.

Following the steps listed above, we have constructed an
experimental model based on the following parameters:
fir=1GHz, W= L=530 cm, w, =125 cm, A =0.3 cm,
R, =62 cm, and R, =31 cm. In order to separate the
effect of diffraction in the vertical direction from that in
the horizontal direction, a resonator with™ a cylindrical
reflector designed to control only the vertical diffraction
loss has also been constructed and tested. Our experimen-
tal models also include a diplexer with plane reflectors so
that the total effect of diffraction in both directions can
also be observed. Preliminary experimental results were
reported in [6].

Although the cavity model described above leads us to
the optimum curvature with minimum diffraction effect, it
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is far too simple to predict how much improvement one
should expect by introducing the phase-matching curved
reflector. The formalism used by Arnaud et al.[5] can be in
principle used to predict transmission of the flat-wall and-
curved-wall geometrices. However, the results of the walk-
off analysis presented in that paper are not applicable here
because of the special boundary conditions imposed by the
reflecting mirrors. The flat mirror case is formally equiva-
lent to the case treated by Arnaud if the single detector is
replaced by an array of detectors. The curved mirror case is
more difficult because edge diffraction from the aperture
of the cavity becomes significant. Description of the cavity
in terms- of its resonant modes is more convenient in-the
high finesse case where edge diffraction is important be-
cause the effects are included implicitly. An analysis based
on a modal expansion will be described in the next section.

III. MATHEMATICAL FORMULATION AND ANALYSIS

Exact three-dimensional analysis of performance of the
diplexer with a curved reflector is fairly complicated. For:
practical application in the millimeter- and ‘submillimeter-
wave regions, where the curvatures are mild, we can as-
sume that diffraction effects in the vertical and horizontal
directions can be decoupled. The original problem is thus
resolved into two simpler problems, namely, a One-dimen-
sional infinite strip resonator problem- for treatment of
vertical diffraction loss, and a two-dimensional waveguide
problem for treatment of horizontal diffraction effect. The
two are decoupled in the sense that the solution from the
first part enters only as a parameter into the second.

A. Infinite Strip Resonator Model

For the plane resonator diplexer, the infinite strip plane
resonator model of Barone [7] is used to approximate the
eigenfunction and the diffraction loss associated with each
mode in the vertical direction. The excitation efficiency of
each mode by various input beams (plane wave and
Gaussian beams with various beam-waist sizes) is evaluated
by the overlap integral of the input function and the
eigenfunction of each mode. For the cylindrical and toroidal
resonator diplexers, diffraction loss in the vertical direction
is estimated by the infinite strip cylindrical resonator model
of Boyd and Gordon [8]. Dimensions of the actual cavity
and the associated models are illustrated in Fig. 4, with
Fresnel Numbers and round-trip amplitude diffraction
losses of the fundamental modes glven in the lower part of
the figure. '

B. Two-Dimensional Waveguidé Problem

Mathematical formulation of the two-dimensional wave-
guide problem, together with the appropriate coordinate
system, are illustrated in Fig. 5. Dependence on the y
coordinate is ignored, since the effect of field variation in
the y direction was separately taken into account in Section
III-A, as explained above. The electric and magnetic fields
at z=0 and z=W can be expanded in terms of the
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Fig. 5. Dimensions and coordinates associated with the two-dimen-
sional waveguide analysis.

I

complete basis set as

Ey(z=0)=Ye,2/L, sin(nmx/L,)
H(z=0)= Xn;hnm sin(nax/L,)
E(z=W)= ie;m sin(nmx/L,)
H(z=W)= ih;ﬂﬁ/_Lg sin(nwx/L,)

(1a)
(1b)
(1c)
(1d)

where all the e,, &), e,, and h, are complex in general.
Symbolically, we can express the expressions above as

(%)= (3) (19)
()= (5) (1

For an input beam linearly polarized in the y direction,
we consider only the TE modes, since the TM modes are
not significantly coupled to our input beam.

Presume we have a T matrix that transforms the FE and
M fields at z =0 to those at z =W, so that

() =7(3)

)

the eigenvalue problem of the waveguide can then be

expressed as

Tu,= A u,=exp(i¢,)u, (3)
where u, and A, are the eigenvectors and the eigenvalues
of the waveguide. The procedure for determination of T
matrix will be described in the Appendix.

In general, T will be a nonsymmetric real matrix and the
eigenmodes will appear in pairs with eigenvalues given by
exp(+i¢), representing forward- and backward-going
waves.

Note that if we represent the eigenvectors in the basis set
as

= | o (@

the associated eigenfunctions ¢, will then be given by
Vo= D Upef2/L, sin(nmx/L,). (5)

Consider a linearly polarized input beam from port I
with the electric field vector given by E = E,(x)y at z = 0.
If we ignore the magnetic part and also the impedance
mismatch between free space and the waveguide, we can
expand the incoming field in terms of the complete set of
basis functions as

Eg(x)=2.8,/2/L, sin(nx/L,) (6)

where

S, =2/L, fOLgsin(nx/Lg)Eo(x) dx. (7)

E,(x) can also be expressed in terms of the eigenfunctions

as
Ey(x)= Z’na% (8)

where the prime is used to symbolize the fact that the
summation should run only over the “E-parts” of the
eigenfunctions with eigenvalues representing the forward-
going waves. Using (5), we can rewrite (8) as

Eo(x) = 2MoVpay2/Ly sin(nmx/L,) (9)
an

where V is the submatrix of u which couples the E field

with the forward-going eigenmodes. By comparing (6) and

(9), we have

(10)

20 a=S,
44
or

(11)

Each eigenmode propagates independently through the
Fabry-Perot, with amplitude transmittance and reflectance
given by [3]

na = Z V:x_n]Sn‘

to= Ao/ (1—r2A%)
r,= na[r + tzAZa/(l — rzAza)]

(12a)
(12b)
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where r and ¢ are the amplitude reflection coefficient and
the amplitude transmission coefficient of the interfaces.
From (9), (11), and (12), the total transmitted and reflected
amplitudes can be expressed as

E,= Y VilSVauf2/Lg sin(nax/L,)[tA,/(1-r*A%)]
(13a)

= Y VilS,Vow/2/L, sin(nmx /L,)
Jr+ 2282 /(1= r2A2)]. (13b)

The field E, and E, can be Fourier analyzed into far-field
patterns. Alternatively, the amplitude received by a detec-
tor (receiver) can be determined by conceptually treating it
as a transmitter and taking the overlap integral of its
emitted amplitude distribution at an appropriate plane
with the normalized amplitude distribution at the same
plane of the fieid to be detected. If the detector at port IV
has the same geometry as the transmitter at port I, we
have, from (6) and (7)

Ef=Ey=Y.8,/2/L, sin(nwx/L,) (14)

and
L, .
S,,=‘/2/Lg/0 Efsin(nmx/L,) dx. (15)
Amplitude received by the detector at port IV is then given
by

= ["*E;E,dx. (16)
0

Using (12a), (13b), and (14), we get
te= Y, ValViaS,S,[ A,/ (1

am” naTm
anm

). )

Similarly, if

L‘g .
Qn=\/2/Lg/0 E#sin(nmx/L,) dx (18)
then
= L VaVuaSnQu[ A0/ (1-PA2)]. (19)
For port I and port II, we have
rn= Y Vv, S,.S,[r+ 2% /(1-r2A%)]  (20)

anm

=Y Vo 5.0

am’” no

WA /(1= r202)]. (21)

As an illustrative example, let us apply the procedure
described above to analyze the simplest special case where
both side walls of the waveguide are flat. The transforma-
tion matrix 7 is given by

anm

T=TXT,X ---T,X--- (22)
| cos(kW) sin(k,W)/k, (23)
"\ —k,sin(k,W)  cos(k,W)

and

k2= (2m/A)’—(nn/L,)". (24)

The eigenvectors
1 1
(ik,,) and ( —ik,,)

satisfy the eigenvalue equations

1 . 1 1
I;'(ik,,) =exp(zk,,W)(l.kn) and Tn( —ikn)
=exp(—iknW)( —1'1( )

as can be easily verified.
For input plane wave from port I with incident angle = ¢

Ey(x)= m exp [ikosinﬂ(x - Lg/Z)] =E}(x)

(25)
Ef(x)=\2/L exp[— ikosinf(x — L,/2)]. (26)
From (17) and (18) we have

- 2/L,
-/()Lgsin(nwx/Lg)exp[ikosinﬂ(x—Lg/2)] dx (27)

Q,=S7.

By straightforward integration, we get

(27a)

S, =— i1/2[exp(n7ri/2) sinc( koL, sin(8,/2)+ nm/2)

—exp (- nmi/2)sinc( koL, sin(8/2)—nm/2)]. (28)

Field amplitude as “seen” by the detector at each port can
be determined by using (17) and (19) through (21).

The rapid decay of “sinc” function with increasing argu-
ment ensures that the infinite sums, over index » and m in
the expression for t,, 5, r,, and r;, have only a few terms
(modes) adjacent to g = k,L,sinf/7 that have significant
contribution. Furthermore, the V matrix turns out to be
“almost diagonal” (i.e., the elements that are significantly
different from zero are those along the diagonal, and in
some cases, those adjacent to the diagonal), so that the
infinite sum, over index «, also converges rapidly within a
few terms in the neighborhood of & = g. Most of the energy
is thus carried via the mode g =k L sinf/7 and the
adjacent modes.

It is the interference between the ¢ mode and adjacent
modes which leads to the directivity. In (17), the contribu-
tion of the ¢ mode to the sum by product S,S, has a
magnitude of ~1/2. The two adjacent modes together
contribute 0.405. For ¢,, the phase is such that these three
modes add, while for ¢, the phase is such that these modes
subtract. This picture, in which directivity is a consequence
of interference between modes, persists to the case of the
diplexer with a curved mirror. For the waveguide with
one curved wall, most of the energy comes in two ad-
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Fig. 6. Phase dispersion of four of the eigenmodes for waveguide with
L=wW=528cm, R=60cm.

jacent modes with propagation phase factors separated by
almost ar.

Using parameters for our experimental model with a
curved mirror, theoretical phase dispersion curves for four
of the eigenmodes have been computed and are plotted in
Fig. 6. Note that the eigenmodes are labeled by index g
such that |u,|>|u,,| for all n. Although this scheme

_introduces some ambiguity when two or more basis modes
are almost equally dominant, it is convenient because it
labels the particular basis mode that has maximum contri-
bution.

Results of our numerical calculations also indicate that,
for optimal Gaussian beam input excitation, only two of
the eigenmodes are significantly coupled and their phase
difference & turns out to be a crucial parameter that
determines the transmission characteristics. We define § as
the fractional part of the phase difference measured in
units of 7. Equivalently, 8 is the frequency separation of
the modes divided by the free spectral range. In Fig. 7,
values of § are plotted against L,/R with m= 2L, /A as
parameters. A is the free-space wavelength and the meaning
of Ly, R, and L, are defined in the inset for Fig. 7. It is
interesting to note that the results (circles) fit very well
by the empirical relation & = exp(—0.0283 m’L,/R)/m
(straight lines).

Transmission into port IV, |¢,]?, is plotted against input
Gaussian beam waist size with radius of curvature of the
waveguide as parameter in Fig. 8. The arrows in the figure
indicate the waist sizes for which the input Gaussian beam
is phase-matched to the curved surface illustrated in Fig. 3.
The agreement with our waveguide analysis is excellent.

So far we have completely ignored the existence of metal
meshes at the input and output planes or our waveguide.
The reflectivity of the metal meshes determine the Finesse
F of the diplexer. In practice, values of F are set by system
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Fig. 7. Normalized phase difference & of the two dominant eigenmodes
versus Ly /R. m=y2 L_/\ is the resonant order. Straight lines repre-
sent the fit by the empirical relation 8 =exp (-0.0283 m?>/L, /R)/m.
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Fig. 8. Through-put (port IV) versus waist size of input Gaussian beam
for different wall curvatures. Waist sizes such that the beam phase-
matched to the curved surface are indicated by arrows.

requirement. Since the Finesse is the free spectral range in
units of transmission linewidth, and 6 is the phase dif-
ference of the two dominant eigenmodes in units of the
free spectral range, the product F§ can be interpreted as
the ratio of phase difference of the two dominant eigen-
modes to that of the transmission linewidth. Transmission
into port IV, |t,]%, for diplexers with flat and curved
reflectors are compared in Fig. 9 for various values of F6.

C. Solutions to the Three-Dimensional Problem

To convert the solutions (17), (19), (20), and (21) of the
two-dimensional problems into those of the original three-
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dimensional diplexer problem, we have to consider the
effect of finite size and curvature of the walls in the vertical
direction. Diffraction loss due to finite size can easily be
taken into account simply by replacing the amplitude
reflectance r by rf and the amplitude transmittance ¢ by t‘/f ,
where 1— fis the amplitude attenuation per round trip due
to vertical diffraction loss. The values of 1— f are given in
Section ITI-A. Under the conditions that loss factor is
relatively small (i.e., 1 — f < 1) and that the vertical curva-
ture of the wall is. mild so that the mode structure of the
two-dimensional waveguide analyzed in Section III-B is
not significantly distorted, the results obtained by this
approach should represent a very good approximation to
the solutions of the original problem. The effective finesse
will be

F=a(f)/(1-7f?) (29)

and

L=T,(-rY /0= (30)
where T, = |t,|* is the power transmission for port IV of
the two-dimensional problem (Fig. 9), and T is the corre-
sponding power transmission for the three-dimensional
problem.

IV. EXPERIMENTAL RESULTS

Our experimental setup for transmission measurement in
the vicinity of 100 GHz is shown in Fig. 10. Electroformed
meshes (MN-40 from Buckbee—Mear Co.) are used as the

partially transmitting mirrors at both sides of the diplexer.

The monomodal approximation [9] is applied to the free-
standing mesh model of Chen [10] to estimate their trans-
mission characteristics. Experimental results at 100 GHz
agree fairly well with theory. Experimental values of T
(power transmission into port IV) for diplexers with differ-
ent geometries of reflecting surfaces are compared in Fig.
11. In each case, values of T, for the corresponding wave-
guides (i.e., with no meshes) are used as the 0-dB reference.
Note that the peak values of 7, are improved by steps of
approximately 3 dB in going from plane to cylindrical and
cylindrical to toroidal reflecting geometries. Within our
experimental errors of +1 dB, the peak of T} for toroidal
diplexer shows 0-dB loss relative to the toroidal waveguide.
Furthermore, the toroidal geometry also helps in supress-

ing the unwanted secondary transmission peak which in-
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Fig. 10. Experimental setup for transmission measurement in the vicm-
ity of 100 GHz.
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Fig. 11. Experimental results of transmission measurement for diplexers
with different geometries. (a) Plane diplexer. (b) Cylindrical diplexer.
(c) Toroidal diplexer. '

variably appears in the transmission characteristic curves
of plane and cylindrical diplexers.
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V. CONCLUSION

In this paper, a solution to the design problem of a
folded Fabry-Perot quasi-optical ring resonator diplexer
for minimum diffraction effect is given. Performance of
diplexers with and without optimal geometry is investi-
gated both theoretically and experimentally. Performance
curves are presented so that they can be used to estimate
how much improvement in performance one could expect
by switching from the plane reflector to the optimal curved
reflector. ‘

Important steps are summarized below for the interest of
prospective practical users.

1) The size of the cavity, appropriate input Gaussian
beam waist size and optimal radii of curvature for mini-
mum diffraction are all determined by the intermediate
frequency fir of the system as explained in Section IL

2) The resonant order ¢ is approximately given by ¢
=V2 W/A.

3) For the plane diplexer, the fractional part of the phase
difference of the two dominant eigenmodes in modulo « is
given by § =1/¢.

4) For the toroidal diplexer, the phase difference can be
obtained from the empirical formula associated with Fig. 7.

5) Based on the value of the Finesse F required by the
experimental condition, peak transmission for both the
plane and toroidal diplexers can be estimated from
the curves given in Fig. 9, assuming no diffraction loss in
the vertical direction.

6) Peak transmission can then be corrected for loss in the
vertical direction using (30), and the reflectivity of the
mesh can be determined from (29).

APPENDIX
DETERMINATION OF T MATRIX FOR A
Two-DIMENSIONAL WAVEGUIDE WITH ONE CURVED
WaALL

The basic idea of our approach is to approximate the
curved surface by a series of steps as illustrated in Fig. 12.
Let the total number of steps be 2N — 1, the depth of the
steps are chosen, for later convenience, so that

L/L_ =(Ly/L))"" fori<0 (A1)

L/L_y=(Ly/L,)"""" fori>o. (A2)

TR

Note that the ratio is independent of the step index “i”.
Values of z where the jumps occur are chosen so that the
original curve x(z) bisects the vertical segments at each
jump, ie, x(z,_, )=(L,_,+ L,)/2. The step width W, is
fixed by the conditions above and does depend on the
index “i”.

The T matrix can be expressed as

I=PJ1,Py I -BI,P\LF Py (TP y
(A3)
where P, the propagation along step “/” of width 6W), is
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Fig. 12. Approximation of curved wall by steps of constant length ratio.

given by
Fi=P X PyX--- (A4)
and
08 ) sin( k,,6W;)/k
ol e PN
with
kyy= Qm/N) = (nm/L,)". (A6)

For frequencies beyond cutoff (i.e., for imaginary values of
k,;), the expression for k,; given above can still be used
with the standard substitution of hyperbolic functions for
trigonometric functions. :
T, is the mode change at each “step up jump” given by

0
T,=|" )
¥ (0 X
and T, is the corresponding change at each “step down
jump” given by

(A7)

(A8)

where

. = 2 fL,_
" vL L, Yo
=JL,_,/L;[sinc(nw —maL,_,/L,)

—sinc(n7 + maL,_,/L;)].

'sin(mmx /L,)sin(nwx/L,_,) dx

(A9)

Note that x,,, depends only on n and m, and the ratio
L, /L, which is independent of the step index “; ™.

For the calculations reported here, the step approxima-
tion converged when 50 to 100 steps were used. The size of
the plane-wave basis required ranged from 10 to 20 values
of n centered about ¢g. Only a few waves beyond cutoff
could be used because of round-off errors in the cosh and
sinh functions.
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Numerical Analysis of Open-Ended Coaxial
Lines "
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Abstract —Numerical methods are applied in the ‘analysis of coaxial
structures used as sensors for in vivo permittivity. studies of biological
substances.” The methods used for the solution of the resulting static
conductor-dielectric problems are the Finite Element Method (FEM) and
the Method of Moments (MOM) applied to a pair of coupled integral
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equations. A linear model which relates the sample permittivity to the
fringing field capacitance of the sensor is discussed and values of the model
parameters are calculated for different types of sensors.

I. INTRODUCTION

PEN-ENDED coaxial lines have been used exten-
sively as sensors for. permittivity measurements of
biological substances in recent years {1]. Their simple
geometry and small size (potentially as small as 0.5-mm
diameter) makes them suitable for in vivo measurements as
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